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INTRODUCTION

During ballistic testing, the 30-mm cartridge case occasionally coined in the barrel
of the M230 gun under unidentifiable conditions. The coining results from the plastic
deformation of the case expanding into the barrel due to ballistic loads. This can result
in the jamming of the gun. The coining effect may also be accentuated by setback
forces. These forces are caused when a lubricated round fails to obturate properly.

Establishing the reiative position between the case and chamber at the instant of
firing is important because it determines the radial gap between the case and the barrel
chamber. As the propellant gases are generated, the case expands until the gap is
closed. When the case comes in contact with the chamber, any remaining buildup in
pressure is transferred to the heavy wall of the barrel, which deflects only a small
additional amount. Therefore, the barrel restrains the case which limits the peak hoop
stress in the thin-wall portion of the cartridge case. A schematic view of the bolt assem-
bly is shown in figures 1 and 2.

ANALYTICAL METHOD

An elastic-plastic stress analysis with increasing ballistic pressure loading up to 70
ksi for the friction and frictionless cases of the 30 mm thin wall steel cartridge case
mounted in the M230 gun was performed using the ANSYS finite element computer
code (ref 1).

The ANSYS code uses the finite element displacement method to determine the
response of arbitrarily shaped structures to arbitrary loading. For this analysis, the
ANSYS preprocessor, PREP7 is used to create an axisymmetric finite element model
using four noded quadrilateral elements and two noded gap elements. The response of
the model to a nonlinear static analysis at various internal pressure loadings up to 70
ksi was investigated. Sources of nonlinearities include the use the gap elements and
plasticity associated with ihe cartridge case material. Results in the form of piots of
iso-stress lines and displacements as well as tabulations of element stresses are
presentad using the ANSYS supplied postprocessor POST 1.

MATERIALS MODELS

The barrel and bolt are assunied to have elastic material properties (fig. 3). The
cartridge case (10B22 steel) is modeled using the classical bilinear kinematic hardening
option provided by the ANSYS code. This option assumes that the total stress range is
equal to twice the yield stress so that the Bauschinger effect is included. Based on




results from previous studies (ref 2), the strain rate was assumed to be a constant 400
in./in./s, a value which is representative of these types of problems. At this strain rate,
the allowable strain energy ‘o failure increases by 7% with respect to that of the static
case. The properties for 10B22 steel are shown in figure 4.

ANALYSIS OF THE CARTRIDGE CASE
Finite Element Model

The thin walled steel cartridge and barrel were modeled using the nominal dimen-
sions shown in figure 5. A portion of the bolt (fig. 6) was also included to obtain reaction
forces. The breech (figs. 7 and 8) was not included in the model since its éffect on the
cartridge case was assumed to be insignificant.

Axisymmetric elements were chosen to take advantage of the symmetry of the
system and reduce computer run timé. Surface stress printout was selected for the
elements Incated at {ne cartridge/barrel interfdce. The interface was modsled using 24
gap elements. The gaps, when closed, were investigated with and without frictional
effects. A schematic of the model is showii in figure 9.

Boundary Cénditiohs

The nominal boundary coriditions impostd on the nigde! &re shewh Iri figure 9. The
bolt is festrained in the dxial directiort to provide a base agaifist whith the cartridgé Eah
react. The barrel is also restrained in the dxial direction to prevent it from drifting away
before the gdp closes. The pressure is dpplied normal to the ihside stirtdce of the
cartridge. The initial maghitude of 3000 psi was calculated to initiate plastic deforma-
tion. Subsequent restarts increrented thg pressure up to 70 ksi. A dimerisigrial afialy-
sis using nomindl values indicated an operi gap in the unloaded condition. The tondi-
tion of the gaps unider subsequerit loads was determingd by the program. The paitial
support provided by the two-bolt grips holdifig the cartridge tase haad was bt inclutéd
in the analysis. It was coricluded by &ngineering judgmerit that by not Includitig the bolt
grips, the model would remain axisymithsttical and yet provide consarvative tEsuls.

Case-Bolt interaction Modélitig

The irreqular shape of the bolt surface impacting against the case head is
shown in figure 6. The bolt head is shaped like an irregular gear with seven teeth. 'fh’q
case head diameter in contact with the bolt is smaller than the Bisit outer didristéf bt
greater than the bolt base diametef.




In order to investigate the possibility of coining in the cartridge case when
setback forces are transmitted from the bolt, two sets of boundary conditions were used.
The first boundary condition set provided fuil support throughout the entire case head.
Therefore, the effective boit diameter was assumed to be equal to the case head
diameter. The second boundary condition provided only partial bolt support at the
contact area. As a result, the bolt contact area was limited to that covered by the bolt
base diameter (16 mm). This last assumption represented an extreme conditicn de-
vised only to obtain upper stress bounds at the case-bolt interface. The effect of the
irregularly shaped bolt is simulated without violating axial symmetry.

Case-Barrel Interaction Modeling

Nominal cartridge and barrel dimensions from figure 5 was used to establish
the initial gap between these components. Gap elements were used to monitor the
status of the interface. An amplified view of these gap elements is shown in figure 10.
As the pressure builds, the cartridge expands to close the gap and push against the
boit. At this point, any further buildup of pressure is transferred to the barrei and limits
the peak hoop stress in the cartridge. Two conditions are considered when the gap
closes, friction and no friction.

The effects of friction are to oppose the pressure pushing the cartridge against
the bolt. This should minimize the amount of coining that occurs. A coefficient of
friction of 0.3 was selected per reference 3 tor the nominal case. This value was
changed to zero to represent the situation of a lubricated round in the breech.

Summary of Computer Solutions

Stress contour plots (figs. 11 to 32) summarize the three sets of computer solutions
obtained.

Three separate anaiyses were conducted on the barrel-case-boit assembly. The
first analysis, the nominal case, included the effects of frictional forces between the
case and the barrel. The second one, representing the lubricated round condition
(nonfrictional case), did not include frictional effects. Full contact area between the
case head and the bolt was assumed in these two analyses. The third analysis was
developed to study the extreme coining effects existing when the area of contact be-
tween the case head and the bolt is minimum and no frictional forces occur between the
case and barrel.

Frictional Case, Nominal Conditions
A friction coefficient of 0.30 (obtained from studies described in ref 3) was used

for the first analysis which started with an initial internal pressure of 3 ksi. The pressure
load was then gradually incremented from 3 to 70 ksi.




At the initial pressure level of 3.0 psi, all gaps remained open. It was observed
from the nodal stress contour plot (fig. 11) that peak nodal equivalent stresses reached
170 ksi at the right end of the case neck area. Stresses across the thin case wall
ranged from 30 to 90 ksi.

At 5 ksi of pressure, gaps located in the case neck area began to close (fig.
12). Equivalent stresses within the neck zone reached yield levels (>153 ksi). Stresses
acioss the middlte section of the thin case wall ranged between 30 and 110 ksi. As the
first gaps began to close, hoop stresses initiated within the barrel. At 5 ksi of internal
pressure, peak nodal stresses in the barrel were less than 3 ksi.

As pressure was increased, remaining gaps continued to close. A stress wave
propagation spreading from the neck region towards the case belt zone was observed.
A plastic region developed between the neck and the far right end of the case when the
applies pressure reached 7 ksi (fig. 14).

At 20 ksi of pressure, 85% of the specified gaps were found to be closed {.g.
16). The other 15%, corresponding to the four gaps located near the case belt, re-
mained opened throughout the entire load history. Stresses in the barrel varied from 10
ksi in the outer surface up to 35 ksi in the inner surface.

At 30 ksi of pressure, the entire case thin wall had yielded and remained in
contact with the barrel (fig. 17).

At 40 ksi of pressure, stresses at the convex surface of the case head reached
the yield level. However, equivalent stresses at the contact area betwean the case and
holt were less than 30 ksi (fig. 18). Equivalent strains throughout 90% of the case
volume were below the elastic limit (0.51%). Strains in the case neck region reached
up to 2.7%, which is greater than the strain yield limit.

At the final pressure value of 70 ksi, peak equivalent stresses along the case-
bolt contact area were less than 50 ksi, well below the yield level of the case materia!
(153 ksi). A few stress concentrations were observed in the cartridge case. These
included the ccnvex surface of the case head, the external case belt surface, and the
internal edges of the case head. Maximum stresses at these concentrations were in
excess of 140 ksi (fig. 19). Total strains in the convex case surface were 0.77%, while
strains in the far case neck end were 2.9%.




Nonfrictional Case, Lubricated Round

Results from the nonfrictional case analysis are shown in figures 21 through
31. It is observed from these equivalent stress plots that the stress distributions and
stress levels at the barrel and thin-wall case areas are similar to those obtained in the
frictional case runs. However, stress levels at the cartridge case head seciion changed.
At 40 ksi of pressure, the formation of stress concenirations of up to 150 ksi at the
circumferential channel adjacent the the belt uf the case head were observed, com-
pared to 80 ksi found in the same zones of the frictional case. At the peak pressure of
70 ksi, stress variations throughout the entire assembly were essentially equivalent to
those obtained in the frictional case. Total strains along the bolt-case surface were
below the elastic limits. The maximum strains in the thin-wall section and far neck
areas were 0.8% and 3.0%, respectively.

Minimum Case-Bolt Contact Area Analysis

In order to assess the effects of coining in the case head due to the partial
reaction support provided by the bolt, a few bolt elements were removed from the
model. As a result, the effective bolt area was given a reduced diameter of 16 mm.
Because of the conservative boundary conditions imposed cn this model, the results
obtained from this - ulysis represent upper bound values.

Restilts corresponding to 50 and 70 ksi of applied pressure are shown in
figures 31 and 32. At 70 ksi of pressure, equivaient stresses throughout the barrel and
thin-wall regions of the case were found to be comparable to those obtained from the
frictional case run (fig. 32). However, the state of stresses in the head region of the
cartridge case had a different distribution fro those of the first two analyses. Stress and
strain levels across the case surface in contact with the bolt were below 150 ksi and
0.51%, respectively. These levels are within the elastic limit. A sharp stress concentra-
tion of 220 ksi was found aiong the case-bolt surface. This stress concentration is
artificial and should be ignored since the actual boundary conditions provide far greater
restraint to the case head, impeding the formation of such types of stress concentration.

The results obtained from this last run confirm that no coining effect takes
place along the cartridge case surface in contact with the bolt, since the average equiv-
alent stresses obtained for the worst case boundary condition are less than the yield
level (153 ksi) of the case material. This means that any deformation in the cartridge
case head zone will vanish cnce the maximum ballistic pressure is released, thus
impeding any coining of the case material.




CONCLUSIONS

Structural response analyses were performed on the 30 mm thin wall steel cartridge
case ard barre! of the M230 gun. These analyses were carried out to evaluate the
response of the cartridge case-barrel-bolt assembly due to the effects of pressure loads.
These analyses were performed using the ANSYS finite element code. Nc.linearities
due to elastroplastic material properties and frictional gap interference fits (between
case wall and barrel) were included. Regions where stress concentrations and plastic
zones were developed were identified by these analyses. Based on the results ob-
tained, it was found that at the maximum applies pressure (70 ksi) no coining develops
in the cartridge case-bolt contact zone.
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frictional case, applied pressure = 70 ks
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Figure 32. Equivalent stress contours, minimum case-boit contact area, applied pressure - 70 ksi
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